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Overview of BEN

• BEN is a spectrum based fault localization
tool.
– Compares the spectra of failing and passing test

executions
• BEN leverages the results obtained from

combinatorial testing to perform fault
localization.

• BEN locates the fault in two-phases:
– Phase 1 : Identify failure-inducing combinations
– Phase 2 : Produce a ranking of statements

3



Phase 1: Identify inducing combinations

• Identify suspicious combinations from the
initial combinatorial test set with execution
results

• Produce a ranking of suspicious
combinations

• Add new tests to refine the ranking
• Repeat until a stopping condition is satisfied
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Phase 2: Produce a ranking of statements

• Generate a small group of tests based on the
failure-inducing combination

• One core member (failing test) and several derived
members (passing tests)

• Core member (failing test) and derived members produce
similar execution traces but have different outcomes.

• Compare the spectrum of core member to the
spectrum of each derived member

• Statements are ranked in terms of their
likelihood to be faulty
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Effectiveness of BEN

• Measured in terms of the percentage of
program statements (executable) the user
has to inspect to locate the fault
– The fewer statements to be inspected, the more 

effective
• Fault properties could be a significant factor 

that impacts the effectiveness of BEN

6



Fault Properties

• Accessibility
– The degree of difficulty to reach (and execute) a 

fault during a program execution
• Input value sensitivity

– Fault triggers a failure based on certain input 
values

• Control flow sensitivity
– Fault triggers a failure while inducing a change of 

control flow in program execution
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Problem Statement

• How do the three fault properties affect the 
effectiveness of BEN?
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Accessibility

• Accessibility score: The ratio of the number of 
tests that execute a faulty statement to the 
total number of tests
– Example: if 9 out of 10 tests execute a faulty 

statement, accessibility score is 0.9.
• In practice, it is nearly always impossible to 

generate all possible tests.
– A random test set can be used to estimate 

accessibility score
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Input value sensitivity

• Fault executed by both passing and failing 
tests is considered as input value sensitive; 
otherwise, it is input value insensitive

• Generating all possible tests is not practical
– A random test set is used to determine whether a 

fault is input value sensitive
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Control flow sensitivity

• P: faulty program and P’: error-free program
– execute the failed tests (exhaustive test set) on P 

and P’ and record their traces
– compare the trace of each test from P and P’
– at least one failed test trace from P is different 

from P’, fault is control flow sensitive; otherwise, it 
is control flow insensitive

• Again, generating and executing all the failed 
tests is nearly impossible.
– a practical option is to execute a random test set.
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Example : Fault Properties
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Example : Accessibility

14



Example : Input value 
sensitivity
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Example : Control flow 
sensitivity
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Example: Control flow 
sensitivity
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Subjects: Siemens suite
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printtokens 188 7

(21×31×44×51×101×132) 8
printtokens2 201 10

replace 242 32 (24×416) 36

schedule 154 9

(21×38×82) 0
schedule2 127 10

tcas 65 41 (27×32×41×102) 0

totinfo 123 23 (33×52×61) 0
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Subjects: GREP
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grep 1 3078 18

(27×41×51×63×81×91×131) 1

grep 2 3224 8

grep 3 3294 18

grep 4 3313 12

grep 5 3314 1
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Subjects: GZIP
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G
ZI

P

gzip 1 1705 16

(211×42)  8

gzip 2 2006 7

gzip 3 1866 10

gzip 4 1892 12

gzip 5 1993 14
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Fault localization results

Programs # of faulty 
versions

# of killed versions

Siemens suite

printtokens 7 3

printtokens2 10 9

replace 32 32

schedule 9 7

schedule2 10 3

tcas 41 36

totinfo 23 12

GREP

grep1 18 3

grep3 18 4

grep4 12 2

GZIP

gzip1 16 6

gzip2 7 3

gzip4 12 1

gzip5 14 3
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Measurement of fault properties

• Randomly generate a set of 1000 tests
• Record the program execution trace using 

GCOV
• High accessibility faults: accessibility 

score>=0.50; Low accessibility faults: 
accessibility score< 0.50
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Impact of accessibility

25

Group Input value 
Sensitivity

Control flow
sensitivity

Accessibility # of 
faults

Average 
% of code

1
Y Y H 56 20.93
Y Y L 41 10.18

2
Y N H 3 29.51
Y N L 2 3.66

3
N Y H 2 10.57
N Y L 16 4.27

4
N N H 0 NA
N N L 3 5.96



Impact of input value sensitivity
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Group Input value 
Sensitivity

Control flow
sensitivity

Accessibility # of 
faults

Average 
% of code

1
Y Y H 56 20.93
N Y H 3 10.57

2
Y Y L 41 10.18
N Y L 16 4.27

3
Y N H 3 29.51
N N H 0 NA

4
Y N L 2 3.66
N N L 3 5.96



Impact of control flow 
sensitivity
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Group Input value 
Sensitivity

Control flow
sensitivity

Accessibility # of 
faults

Average 
% of code

1
Y Y H 56 20.93
Y N H 3 29.51

2
Y Y L 41 10.18
Y N L 2 3.66

3
N Y H 3 10.57
N N H 0 NA

4
N Y L 16 4.27
N N L 3 5.96
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Conclusion

• Investigate the impact of three fault properties 
on the effectiveness of BEN

• A random test set-based approach was 
followed to determine the three fault 
properties.

• BEN is very effective in localizing 
– low accessibility faults
– input value-insensitive (or control flow-insensitive) 

faults than input value-sensitive (or control flow-
sensitive) faults
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Future work

• Evaluate the impact of high accessibility, 
input value and control flow insensitive faults

• Use scalar measures for input value and 
control flow sensitivity and analyze the 
correlation 

• Create different types of faults using a 
mutation tool and evaluate their impact
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