
Evaluating the effectiveness of BEN
in localizing different types of

software fault
Jaganmohan Chandrasekaran, UT Arlington

In collaboration with Laleh S.
Gholamhosseing(UTA), Jeff Lei (UTA), Raghu

Kacker (NIST), and D.Richard Kuhn (NIST)
April 10, 2016

1

Outline

• Introduction
• Three Fault Properties
• Experimental Design
• Experimental Results
• Conclusion

2

Overview of BEN

• BEN is a spectrum based fault localization
tool.
– Compares the spectra of failing and passing test

executions
• BEN leverages the results obtained from

combinatorial testing to perform fault
localization.

• BEN locates the fault in two-phases:
– Phase 1 : Identify failure-inducing combinations
– Phase 2 : Produce a ranking of statements

3

Phase 1: Identify inducing combinations

• Identify suspicious combinations from the
initial combinatorial test set with execution
results

• Produce a ranking of suspicious
combinations

• Add new tests to refine the ranking
• Repeat until a stopping condition is satisfied

4

Phase 2: Produce a ranking of statements

• Generate a small group of tests based on the
failure-inducing combination

• One core member (failing test) and several derived
members (passing tests)

• Core member (failing test) and derived members produce
similar execution traces but have different outcomes.

• Compare the spectrum of core member to the
spectrum of each derived member

• Statements are ranked in terms of their
likelihood to be faulty

5

Effectiveness of BEN

• Measured in terms of the percentage of
program statements (executable) the user
has to inspect to locate the fault
– The fewer statements to be inspected, the more

effective
• Fault properties could be a significant factor

that impacts the effectiveness of BEN

6

Fault Properties

• Accessibility
– The degree of difficulty to reach (and execute) a

fault during a program execution
• Input value sensitivity

– Fault triggers a failure based on certain input
values

• Control flow sensitivity
– Fault triggers a failure while inducing a change of

control flow in program execution

7

Problem Statement

• How do the three fault properties affect the
effectiveness of BEN?

8

Outline

• Introduction
• Three Fault Properties
• Experimental Design
• Experimental Results
• Conclusion

9

Accessibility

• Accessibility score: The ratio of the number of
tests that execute a faulty statement to the
total number of tests
– Example: if 9 out of 10 tests execute a faulty

statement, accessibility score is 0.9.
• In practice, it is nearly always impossible to

generate all possible tests.
– A random test set can be used to estimate

accessibility score

10

Input value sensitivity

• Fault executed by both passing and failing
tests is considered as input value sensitive;
otherwise, it is input value insensitive

• Generating all possible tests is not practical
– A random test set is used to determine whether a

fault is input value sensitive

11

Control flow sensitivity

• P: faulty program and P’: error-free program
– execute the failed tests (exhaustive test set) on P

and P’ and record their traces
– compare the trace of each test from P and P’
– at least one failed test trace from P is different

from P’, fault is control flow sensitive; otherwise, it
is control flow insensitive

• Again, generating and executing all the failed
tests is nearly impossible.
– a practical option is to execute a random test set.

12

Example : Fault Properties

13

Example : Accessibility

14

Example : Input value
sensitivity

15

Example : Control flow
sensitivity

16

Example: Control flow
sensitivity

17

Outline

• Introduction
• Three Fault Properties
• Experimental Design
• Experimental Results
• Conclusion

18

Subjects: Siemens suite

Subject
Programs

of

 li
ne

s
of

ex

ec
ut

ab
le

co

de

of

 fa
ul

ty

ve
rs

io
ns

Model Constraints

S
ie

m
en

s
su

ite

printtokens 188 7

(21×31×44×51×101×132) 8
printtokens2 201 10

replace 242 32 (24×416) 36

schedule 154 9

(21×38×82) 0
schedule2 127 10

tcas 65 41 (27×32×41×102) 0

totinfo 123 23 (33×52×61) 0

19

Subjects: GREP

Subject
Programs

of

 li
ne

s
of

ex

ec
ut

ab
le

co

de

of
 fa

ul
ty

ve

rs
io

ns

Model Constraints

G
R

E
P

grep 1 3078 18

(27×41×51×63×81×91×131) 1

grep 2 3224 8

grep 3 3294 18

grep 4 3313 12

grep 5 3314 1

20

Subjects: GZIP

Subject
Programs

of

 li
ne

s
of

ex

ec
ut

ab
le

co

de

of
 fa

ul
ty

ve

rs
io

ns

Model Constraints

G
ZI

P

gzip 1 1705 16

(211×42) 8

gzip 2 2006 7

gzip 3 1866 10

gzip 4 1892 12

gzip 5 1993 14

21

Fault localization results

Programs # of faulty
versions

of killed versions

Siemens suite

printtokens 7 3

printtokens2 10 9

replace 32 32

schedule 9 7

schedule2 10 3

tcas 41 36

totinfo 23 12

GREP

grep1 18 3

grep3 18 4

grep4 12 2

GZIP

gzip1 16 6

gzip2 7 3

gzip4 12 1

gzip5 14 3

22

Measurement of fault properties

• Randomly generate a set of 1000 tests
• Record the program execution trace using

GCOV
• High accessibility faults: accessibility

score>=0.50; Low accessibility faults:
accessibility score< 0.50

23

Outline

• Introduction
• Three Fault Properties
• Experimental Design
• Experimental Results
• Conclusion

24

Impact of accessibility

25

Group Input value
Sensitivity

Control flow
sensitivity

Accessibility # of
faults

Average
% of code

1
Y Y H 56 20.93
Y Y L 41 10.18

2
Y N H 3 29.51
Y N L 2 3.66

3
N Y H 2 10.57
N Y L 16 4.27

4
N N H 0 NA
N N L 3 5.96

Impact of input value sensitivity

26

Group Input value
Sensitivity

Control flow
sensitivity

Accessibility # of
faults

Average
% of code

1
Y Y H 56 20.93
N Y H 3 10.57

2
Y Y L 41 10.18
N Y L 16 4.27

3
Y N H 3 29.51
N N H 0 NA

4
Y N L 2 3.66
N N L 3 5.96

Impact of control flow
sensitivity

27

Group Input value
Sensitivity

Control flow
sensitivity

Accessibility # of
faults

Average
% of code

1
Y Y H 56 20.93
Y N H 3 29.51

2
Y Y L 41 10.18
Y N L 2 3.66

3
N Y H 3 10.57
N N H 0 NA

4
N Y L 16 4.27
N N L 3 5.96

Outline

• Introduction
• Three Fault Properties
• Experimental Design
• Experimental Results
• Conclusion

28

Conclusion

• Investigate the impact of three fault properties
on the effectiveness of BEN

• A random test set-based approach was
followed to determine the three fault
properties.

• BEN is very effective in localizing
– low accessibility faults
– input value-insensitive (or control flow-insensitive)

faults than input value-sensitive (or control flow-
sensitive) faults

29

Future work

• Evaluate the impact of high accessibility,
input value and control flow insensitive faults

• Use scalar measures for input value and
control flow sensitivity and analyze the
correlation

• Create different types of faults using a
mutation tool and evaluate their impact

30

References

1. A. Bandyopadhyay, S. Ghosh. On the Effectiveness of the Tarantula Fault Localization
Technique for Different Fault Classes. Proceedings of 13th International Symposium on
High-Assurance Systems Engineering (HASE), 317-324, 2011.

2. L.S.Ghandehari, Y.Lei, D.Kung, R.Kacher and R.Kuhn. Fault localization based on failure-
inducing combinations. Proceedings of IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE), 168–177, 2013

3. L.S.Ghandehari, Y.Lei, T.Xie, R.Kuhn and R.Kacker. Identifying failure-inducing
combinations in a combinatorial test set. Proceedings of the IEEE International Conference
on Software Testing, Verification and Validation (ICST). 370-379,2012

4. L.S.Ghandehari, Y.Lei, R. Kacker and R.Kuhn. A Combinatorial testing based approach to
fault localization. [under preparation]

31

