
Applying a pairwise coverage criterion
to scenario-based testing

Lydie du Bousquet, Michael Delahaye, Catherine Oriat

Example: Bounded-Stack
public class BoundedStack {

private int[] elems;

private int numberOfElements;

private int max;

public BoundedStack() {…}

public void push(int k) {…}

public void pop() {…}

public int top() {…}

public boolean isEmpty() {…}

}

Vocabulary
� A test suite

‣Set of test cases

‣Size: number of test cases

� A test case

‣Sequence of method calls‣Sequence of method calls

‣ Size: number method calls

� Example:

‣T1: BoundedStack(); pop(); top();

‣T2: BoundedStack(); IsEmpty(); push(6);

Scenario-based testing

� To test the class,

‣ Init the object

‣ Apply different instantiated calls

� Scenario: C; M3..3

‣ C = { “int res; stack s = new stack(); int i = -1;” }

‣ M = { “s.push(i++);”;

“s.push(-1);”;

“s.pop();”;

“s.top();” }

� Complete unfolding => Test suite of 43 test cases

Executable test cases

Oracle is not the subject of the article.

It can be implemented with assertions embedded in the code

Complete unfolding: combinatorial explosion

� [Arcuri] Size of the test cases is important to expose failure

� C; M3..3 -> C; M10..10 (for instance)

‣ Combinatorial explosion!

‣ So many test cases might not be relevant (execution cost)

� Need to select a subset of test cases

� Different strategies for selection

‣ Randomly: But how many ?

‣ W.r.t some coverage criteria: why not pairwise ?

๏ Simple to apply

๏ A priori relevant in the sense that the order of calls has an importance

push(1); pop(); different from pop(); push(1);

C; M; M; M;

c1 m1 m1 m1

c2 m2 m2 m2

Pairwise coverage applied to method calls

c2 m2 m2 m2

m3 m3 m3

m4 m4 m4

m5 m5 m5

Pairwise coverage applied to method calls

C; M; M; M;

c1 m1 m1 m1

c2 m2 m2 m2c2 m2 m2 m2

m3 m3 m3

m4 m4 m4

m5 m5 m5

Is this coverage relevant?

� Experimentation

� Hypothesis: Random better than pairwise

� Subjects: 15 classes under tests

‣ Containers and other types of classes with internal classesContainers and other types of classes with internal classes

� Test suites generated from scenarios: C; Mi..i

‣ 252 test configurations = { SUT, C, M, i }

‣ Pairwise selection with ACT => 100 test suites by configurations

‣ Random selection => 100 test suites by configurations, same size

Test suite size

Mutation analysis

� Mutant = Program under test + a single fault

‣ Fault introduced w.r.t. mutation operator (e.g. + is transformed into -)

‣ Mutant killed if Mutant and Original programs give different results

‣ Mutation score: number of mutant killed by a test suite

� Trivial mutants are removed

‣ Mutants killed by a test case composed of a single method call

‣ Not relevant w.r.t. Pairwise hypothesis

� 1720 Non trivial mutants for the 15 classes under test

� Experimentation: comparing mutation score

Mutation score in average

� Contingency table

‣ Pairwise test suites: PT

‣ Random test suites: RT

Experiental results

� Wilcoxon signed-rank test

‣ p-value of 8:22810

‣ Hypothesis can be rejected with more than 95% confidence

‣ (even with more than 99%)

Threats of validity

� Program under test (number and type)

� Choice of data

� Type of faults (mutation)

Conclusion & perspectives

� Pairwise coverage better than random selection

� Longer is better (see Arcuri)

� Size of pairwise test suite relevant

� New experiments with more complex scenarios

