Embedded Functions for
Constraints and Variable Strength
in Combinatorial Testing

George B. Sherwood

Open http://testcover.com/pub/background/iwct2016.pptx
with PowerPoint for presentation notes and animations

%al Testcover.com

Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes

http://testcover.com/pub/background/iwct2016.pptx�

()

Project objectives and this talk

e Testcover.com service usability enhancement project

— Simple functions to describe constraints

— Automatic function evaluation and test case generation
— Variable strength designs

— Suitable response times

— Practical numbers of test cases

 Topics
— Calendar constraints: Conform to constraints with a simple function
— Body Mass Index (BMI) report classes: Use equivalence class
functions to reach expected results classes
— Shopping cart states: Simplify complex behavior with functions
— Variable strength: Use hybrid functions for higher strength subarrays
while conforming to other constraints

- TeStcove r CO m Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
This talk is about a usability enhancement project for Testcover.com, which is a commercial, online service for generating combinatorial test cases. The idea was to make it easier for practicing software engineers to describe system constraints in their test designs. The project met 5 objectives as follows.
Specify constraints among test factors with simple functions in an established programming language. Here we’ve used PHP. Practitioners routinely build complex systems organized into functions. So coding constraints as functions should be easy.
Evaluate composite, embedded functions automatically to generate test cases. Automatic evaluation may eliminate the need for a logic solver, which practitioners may not be familiar with.
Generate variable strength designs using embedded functions. Given the first 2 objectives, variable strength designs are just a corollary. The designs in the paper are a variation on the concept introduced by Myra Cohen, Peter Gibbons, W. B. Mugridge, Charlie Colbourn and James Collofello. But the objective is the same: Apply higher strength to a subset of test factors, so they get additional coverage, but without the larger cost of higher strength for all factors. And with embedded functions the higher strength combinations conform to other constraints in the test model, if there are any.
Finally, there were 2 performance objectives. Generate test case designs with suitable response times
and with practical sizes.
I plan to talk about 4 topics. The calendar constraints example tests a date implementation. This is just a warm-up to clarify concepts and definitions.
The body mass index example in the paper gives a new result that challenges some of our conventional wisdom. It shows how to reach classes of equivalent results, which may depend on several test factors, using one pairwise test case generation. So, typically, fewer test cases are needed. What’s new is that the equivalence class functions are combination functions, which are evaluated before test case generation. So the functions provide test case constraints to reach all the classes.
The shopping cart is the primary example in the paper. It has 18 test input factors, and it uses 40 instances of 9 combination functions for constraints. I plan to talk about 1 function, the f_item function, which chooses shopping cart item values conforming to constraints. The function is used 9 times in the example. My intention is to illustrate the relations among the functions and to provide a closer look at how they are evaluated.
The paper also has several variable strength examples. I’d like to offer a brief summary of how that works.

)
\J

Test model terms

e There are £ test factors, e.g. configurations & inputs
e Atest case has 1 value for each factor (i.e. a £-tuple)

e Astrength-t design (¢ < £) includes all required ¢-tuples of test
factor values

e A partition includes the allowed combinations (¢-tuples) for 1 test
case generation instance

 An equivalence class includes combinations for 1 class of
expected results

e A constraint is a condition to specify allowed factor values
depending on the values of other factors

e Masking occurs when required tuples are missing from test cases
for a class of results

%al Testcover.com

Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
Our test model has k test factors. Typically the factors are configuration parameters and test inputs.
Each test case has 1 value for each factor, so it’s a k-tuple.
A strength-t design with t ≤ k includes all required t-tuples of test factor values.
A partition refers to the combinations a test case generator can use to select 1 array of test cases. It includes combinations of selected factor values at least once, and it excludes disallowed combinations, if any. So a partition is a covering array, possibly with some combinations excluded.
An equivalence class refers to combinations for similar expected results. Equivalence classes are used to verify types of results, while limiting the number of test cases run for each class.
A constraint is a required condition to specify allowed factor values, which depend on other factor values. Constraints can come from configuration or input requirements. Or they may be needed to insure coverage of equivalence classes. Or they may be used to include higher strength combinations.
Masking occurs when required tuples are missing from test cases for a class of results. When we don’t apply required constraints, we can generate test designs with invalid configurations and inputs, and we can miss classes of expected results that should be verified.

Functionally dependent test factor values

e Constraints can be described using functionally
dependent test factor values

 Functional dependence:
1 or more values of a dependent factor are identified by other,
determinant factors
Determinant factors’ values - dependent factor values

e Example: The last day of any month is identified its
month and year
Month, Year - Last day values
¢ = number of determinant factors (€ = 2 in this example)
e Use Direct Product Block (DPB) notation with or
without embedded combination functions

%al Testcover.com

Copyright © 2016 Testcover.com, LLC. All rights reserve

Presenter
Presentation Notes
With embedded functions we’re using functionally dependent relations to apply constraints among test factor values.
This means 1 or more values of a dependent factor are identified by other, determinant factors. The determinant factors’ values imply some or all of the dependent factor values.
For example, the last day of any month is identified by the month and its year.
This calendar example can illustrate an embedded combination function. First we’ll look at constraints using Direct Product Block notation without the combination function. Then we’ll see how DPB notation can be enhanced by using the function.

Direct Product Block (DPB) notation

Fixed values form

Calendar Example without last_day function

e Valid calendar dates example

Month

Day with boundary checking

ear

#ok All good dates e Factor values are on separate
jan feb mar apr may jun jul aug sep oct nov dec .

110 lines

2015 2016 2017 . . .

+long month last day e All combinations in a block are
jan mar may jul aug oct dec

¥ allowed

2015 2016 2017 ey . .

+ short month last day e Partition of multiple blocks
S sep oY includes union of their allowed
2015 2016 2017 combinations

+ feb last day

feb

28

2015 2017

+ leap day

feb

29

2016

Testcover.com

Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
In this example we want to verify an equivalence class of system responses for valid calendar date inputs. We want to check class boundaries for the first and last day of each month. The DPB notation is on the left side, with the yellow background. It is in fixed values form, meaning there are no functions included.
We have names for the factors on 3 lines at the top. Their values appear on separate lines in the same order. In the first block we have all the months, days 1 and 10, and 3 years.
All the combinations of values on these lines give valid dates. They comprise the combinations for 1 of the 5 blocks shown.
The next block has the combinations for months with 31 days.
Taken together the blocks describe all the allowed combinations for valid dates.

Direct Product Block (DPB) notation

Fixed values form

Functionally dependent form

Calendar Example without last_day function
Month

Day

Year

#ok All good dates

jan feb mar apr may jun jul aug sep oct nov dec
110

2015 2016 2017

+ long month last day

jan mar may jul aug oct dec
31

2015 2016 2017

+ short month last day

apr jun sep nov

30

2015 2016 2017

+ feb last day

feb

28

2015 2017

+ leap day

feb

Calendar Example with last_day function
Smonth

Day

Syear

#ok All good dates

jan feb mar apr may jun jul aug sep oct nov dec
1 10 last_day(Smonth,Syear)

2015 2016 2017

Month, Year - Last day values

Factors renamed as variables for

function arguments:
Smonth Syear

Day values:
1 10 last_day(Smonth,Syear)

5 blocks now represented by
only 1 block

Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
We need a function that gives the last day for any month and year.
Using that function we can rewrite the generator request in functionally dependent form. We’ll rename the Month and Year factors as PHP variables with a dollar sign ($) to use as arguments in the function.
The Day factor now has fixed values, 1 and 10, and the values given by the last_day function.
The 5 blocks in fixed values form are now represented by 1 block in functionally dependent form. These 2 requests will generate the same test cases. It doesn’t matter which one we choose. Let’s pick the functionally dependent form.
Calendar demo
We copy the request, go to the request form, and paste it in. Then click the submit button. Here we see submitted request followed by 40 test cases. Each month has day 1, 10 and its last day, for each of the 3 years. Let’s look at how this happened.

Evaluation of calendar last_day function

Fixed values 5 FV blocks Functionally dependent 5 FV blocks
+ Day: 110 Test cases + FD block + Day: 110 Test cases
2 e | e oy RN 2 e
+ Day: 31 e oo o e e e + Day: 31

All fixed values 1 10 last_day(Smonth,Syear)

+ Day: 30 FV: 110 Evaluation & collection | + pay: 30

cf,: last_day(Smonth,Syear)

+ Day: 28 + Day: 28

+ Day: 29 + Day: 29

e} Testcover.com

Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
Here’s a closer view at how the blocks work. These yellow boxes represent the calendar blocks in FV form.
The request is parsed, and no combination functions are found.
The request already is in fixed values form, and the test cases are generated.
Alternatively we can start with 1 block in FD form. cf1 is the last_day function.
This block is parsed, and the Day values are found.
Days 1 and 10 are fixed values, and last_day is the combination function.
A fixed values block is created from the functionally dependent block for days 1 and 10. This subblock inherits the $month and $year values from the functionally dependent superblock.
Next the last_day function is evaluated for all combinations of $month and $year values.
The values returned are collected into 4 subblocks with the indicated Day values. Each of these subblocks contains $month-$year combinations which determine the last_day value. So all combinations of factor values in each subblock are allowed. They have fixed values, and they represent valid dates.
The test case generator processes the blocks as before and generates the same test cases. One way to look at the process is that the functionally dependent block is split into fixed values blocks. The procedure is to evaluate the function for all combinations of its determinant factors, and to collect the values into new blocks.

)
\J

Equivalence class functions

e Equivalence class functions identify classes of expected results
e Adult_report(SAge,SWeight,SHeight) returns report class:

underweight normal overweight obese no

e Combinations of determinant values are required
 An equivalence class factor has all its class values

because all of its determinant combinations are evaluated

e Pairwise test case generation covers all of these classes

because they are values of the equivalence class factor
e Equivalence classes are paired with nondeterminant factors
 Higher strength not needed to reach well defined classes

%al Testcover.com

Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
An equivalence class function identifies a class of expected results based on the values of its determinant factors. That is, inputs in a configuration determine expected results.
For example, in a body mass index report application, an adult report is expected when $Age ≥ 20.The type of report is based on the Body Mass Index classification, which is determined by $Weight and $Height. So there are 5 classes. 4 correspond to the BMI classifications, And the fifth, no, is for $Age < 20, when the adult report is not expected.
To verify the application we need test cases to reach these classes. We can choose $Age values above and below 20. And we can pick $Weight and $Height values for all of the BMI classifications. Now what strength do we need? The equivalence class function depends on 3 factors. So with the right input values we can reach all the classes with a strength 3 design. But there’s another choice:
We can add an equivalence class factor to the design. This factor takes its values from an equivalence class combination function. It takes all of its class values because it is evaluated for all combinations of its determinant factors.
A pairwise test design covers all of these classes because they are values of the equivalence class factor.
And these equivalence classes are associated with all their nondeterminant factor values for the same reason.
This means that when the classes of expected results are known, we can use equivalence class combination functions instead of higher strength.

Equivalence class factors

Functionally dependent form 5input factors

Body Mass Index Report Application - 1 partition .

e P e 3 equivalence class factors
SAge .

svfeight Medicare_report
SHeight

&Sex SAge 2 65: yes
Intake _ SAge < 65: no
Medicare equivalence class

Child equivalence class Ch”d repo rt

Adult equivalence class -

SAge > 20: no
1942 67

131 180 SSex = female: girl
o4 71 SSex = male: boy
female male ’

2000 3000

Medicare_report(SAge) Ad u It—re PO rt
Child_report(SAge,SSex) SAge < 20: no
Adult_report(SAge,SWeight,SHeight)

else: BMI classification

I
‘ TeStcove r CO m Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
Here’s a test case generation request for this example. There is 1 block in functionally dependent form. The first 5 factors are for the test inputs; they have fixed values.
The next 3 factors are equivalence class factors whose values are given by equivalence class functions. There are 3 of them because there are 3 report types with different criteria.
The Medicare_report is generated when $Age ≥ 65.
The Child_report is generated when $age < 20. There’s a boy report and a girl report, because boys and girls grow at different rates.
And there’s the Adult_report mentioned earlier. There are a total of 10 equivalence classes which can occur in various combinations.
Equivalence class factors demo
We copy the request, go to the request form, and paste it in. Then click the submit button. Here we see submitted request followed by 14 test cases. The design reaches all the ECs. There are 2 for the Medicare report, 3 for the Child report and 5 for the Adult report.
The nondeterminant factors are paired with the ECs also. The overweight class appears twice. It is paired with $Sex female and Intake 2000 in test case 1. The overweight class also is paired with male and 3000 in test case 7.

Evaluation of equivalence class functions

10 FV blocks

+ FD block + Medicare: yes + Child: no + Adult: underweight
o Cfy e 1 + Adult: normal
...... cf, e e Cfy e I
......... oy N e e e Cfg e e e e Cfg e g
L 1 + Adult: obese
SAge: 19 42 67 SAge: 67 SAge: 67 |
+ Medicare: no + Child: no + Adult: underweight
0 600 200 ‘| + Adult: normal
...... cfy oo e e 1 s raEn
......... oy ST SRR o) A g
L 1 + Adult: obese
SAge: 19 42 SAge: 42 Ll
Evaluation & collection + Child: boy + Adult: no
cf,: Medicare_report(SAge) TN
......... oy SN
cf,: Child_report(SAge,SSex)
_ . SAge: 19 SAge: 19
cf;: Adult_report(SAge,SWeight,SHeight)
+ Child: girl + Adult: no
......... oy SN
SAge: 19 SAge: 19

Testcover.com

Test cases

Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
Let’s look at how this works. Here’s the FD block with 3 combination functions.
The request is parsed, and the 3 EC functions are found. All the functions depend on $Age. No function depends on another one, so any evaluation order will work. During evaluation of each function, any function to be evaluated later is treated as a FV. For example, during the evaluation of the Medicare_report function, the Child_report and Adult_report functions are considered fixed strings.
The Medicare_report is evaluated for all $Age values. When $Age is 67, the Medicare_report function returns yes because the report is an expected result. When $Age is 19 or 42, the report is not expected. The 3 $Age values are collected into 2 new blocks, 1 for each of the Medicare_report ECs. These subblocks inherit their other values from the original block.
The 2 new blocks are evaluated for the Child_report next, with all combinations of $Age and $Sex.
The first block inherits $Age 67, so the Child report is not expected. These combinations are collected into a block with the value no for the Child_report.
When $Age is 42, the Child report is not expected also. However when $Age is 19, the boy and girl reports are expected for $Sex values male and female respectively. The Child_report combinations for $Age 19 and 42 are collected into 3 blocks according to the Child_report equivalence classes.
Now each of these 4 blocks is evaluated for the Adult_report, using all combinations of $Age, $Weight and $Height.
When $Age is 67, there is one block for each of the Adult_report classes, underweight, normal, overweight and obese.
Four blocks result for $Age 42 also.
The next block inherits $Age 19 and $Sex male, so the Adult_report class is no.
Similarly the last block has Adult_report no.
These 10 fixed values blocks are used to generate 14 test cases. The test cases reach all 10 equivalence classes, and each class is paired with all the values of its nondeterminant factors.

Constraint simplification

Instant Shopping

Your cart contains:

Delete Item Number Item Description Quantity Price Item Total

O itemA descriptionA 1 14.95 14.95

O itemB descriptionB 2 9.95 19.90

O itemC descriptionC 1 5.95 5.95
+

Subtotal: $ 40.80

L Checkout > J

Constraints: Simplification for nonemptyCart to
sItems in different positions must be nonemptyCart transition:

different *Without combination functions: 33 blocks
*Factor values may be NULL (unused) *With 9 combination functions: 3 blocks
*Equivalence classes are target UML leaf eAverage function length: 7 lines

states to avoid masking

TeStcove r CO m Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
This is the third example, to show how combination functions can describe more complex constraints. Here we have an on-line shopping cart containing 3 items. The application lets us check and uncheck items for deletion. It lets us change quantities to buy. We have a button to update the cart for deletions and changed quantities. And we have buttons to return to shop or proceed to checkout. The test model allows for up to 3 items in the cart and uses a UML state diagram, which we’ll see on the next slide. This slide depicts the nonemptyCart state.
There are a few constraints to point out. First, items in different positions must be different. If itemA is in the top position, it cannot be repeated in a different position.
If there are fewer than 3 items in the cart, some factor values will be unused and represented as NULL.
In the test model each transition is directed to a specific state to avoid masking. So inputs are constrained to 1 target state at a time.
How do embedded functions help here?
33 blocks were needed to describe the partition with fixed values.
With 9 combination functions the number of blocks was reduced to 3.
And the average function length was 7 lines. They were not very complicated.

S

entry / addltem();

exit/ for(i=0; i<n; i++) {

}

N

lUPDATEf updateltems();
SHOPl

cart

[n>0] [else]

delChk[i]=0;
newQ[il=qty[i];

nonemptyCart
entry / displayNonemptyCart();

© ™

~

emptyCart
entry / displayCartStart();

displayButton{SHOP);
displayCartEnd():

) CHECK(i)[0<=i&&i<n]/ delChk{i)=1-delChk(i):

) QTY(i,q)[0<=i&&i<n] [newQ]i]=q;

/

Presenter
Presentation Notes
This is the shopping cart state diagram. It shows 2 lowest-level, leaf states: emptyCart and nonemptyCart. The example focuses on events for the transition from the nonemptyCart state to the nonemptyCart state. These are CHECK for checking or unchecking deletion boxes, QTY for entering new quantities, and UPDATE for making the deletion and quantity changes. There is 1 FD block corresponding to each of these 3 events.

Shopping cart
test factors

 Program variables
Indexed for cart position
SdelChk[0]
Sitem[0]

Saty[0]

SnewQ[O]

Current state

nonemptyCart
e Event (trigger)
CHECK QTY UPDATE

Testcover.com

I [=13 Test Factor | Combination
Factor Values Functions

Snewltem

$n
$delChk[0]
Sitem([0]
Sqty[0]
SnewQ[0]
$delChk[1]
Sitem[1]
Sqty[1]
SnewQ[1]
$delChk([2]
Sitem([2]
Sqty[2]
SnewQ[2]
Si

$q

state
event

NULL
123

01

itemA itemB
itemC
1210

01210
0 1 NULL

itemA itemB
itemC NULL
1210 NULL

01210NULL
01 NULL

itemA itemB
itemC NULL
12 10 NULL

01210NULL

012NULL
01210NULL
nonemptyCart
CHECK(Si)
QTY(Si,5q)
UPDATE

f_delChk_CQ
f_delChk_U
f_item

f_qty

f_newQ_CQ
f newQ_U
f_delChk_CQ
f_delChk_U

f item

f_qty

f newQ_CQ
f newQ_ U

f delChk_CQ
f_delChk_U

f item

f_qty

f newQ_CQ
f newQ_U
fi

Iltem to place in cart
Number of items in
cart

Delete box checked in
cart position 0

Item in cart position 0

Quantity of item in
cart position 0

New quantity shown
in cart position O
Delete box checked in
cart position 1

Item in cart position 1

Quantity of item in
cart position 1

New quantity shown
in cart position 1
Delete box checked in
cart position 2

Item in cart position 2

Quantity of item in
cart position 2

New quantity shown
in cart position 2

Cart position for event
Quantity for event
Source state

f_event_CHECK Trigger to target state

f_event_QTY

Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
This slide shows the test factors, values and functions used in this example. Most of the factors are program variables for the test model. For example, $n is the number of different items in the cart. The factors associated with the cart positions are indexed for positions 0, 1 and 2. Each position has 4 factors. These indicate
whether the delete box is checked,
which item is there,
the quantity of the item,
and a new quantity for update. In each block the same function is used for all the cart positions. You can see the f_item function is used for positions 0, 1 and 2.
The current state is a test factor.
And the event that triggers the transition is a test factor.

Shopping
cart blocks

e DPBrequestin FD form
e 18 factor names
e Valuesin 3 blocks
* Allowed item values:
itemA itemB itemC
NULL
e f _item function returns
item values in all 3
blocks for:
Sitem[0]
Sitem[1]
Sitem[2]

Testcover.com

Shopping Cart - transition design - SCA (2,18)
Snewltem

Sn

SdelChk[0]

Sitem[0]

Sqty[0]

SnewQ[0]

SdelChk[1]

Sitem[1]

Sqty[1]

SnewQ([1]

SdelChk[2]

Sitem([2]

Sqty[2]

SnewQ([2]

Si

$q

State

Event

#NN nonemptyCart to nonemptyCart
+ nonemptyCart to nonemptyCart; CHECK
NULL

123

f_delChk_CQ(0,5n)
f_item(0,5n,,)

f_qty(0,$n)

f_newQ_CQ(0,5n)
f_delChk_CQ(1,5n)
f_item(1,5n,Sitem[0],)
f_qty(1,5n)

f_newQ_CQ(1,5n)
f_delChk_CQ(2,5n)
f_item(2,5n,Sitem[0],Sitem[1])
f_aty(2,5n)

f _newQ_CQ(2,5n)

f_i(Sn)

NULL

nonemptyCart
f_event_CHECK(Si)

+ nonemptyCart to nonemptyCart; QTY
NULL

123

f_delChk_CQ(0,$n)
f_item(0,$n,,)

f_qty(0,5n)

f_newQ_CQ(0,5n)
f_delChk_cQ(1,$n)
f_item(1,5n,Sitem[0],)
f_aty(1,5n)

f_newQ_CQ(1,5n)
f_delChk_CQ(2,5n)
f_item(2,5n,Sitem[0],Sitem[1])
f_aty(2,5n)

f_newQ_CQ(2,5n)

f_i(Sn)

01210

nonemptyCart
f_event_QTY(S$i,$q)

+ nonemptyCart to nonemptyCart; UPDATE
NULL

123

f_delChk_U(0,$n,1,0,1,0)

f_item(0,5n,,)

f_qty(0,$n)

f _newQ_U(0,%n,1,0,1,0)
f_delChk_U(1,$n,$delChk[0],$hewQ][0],1,0)
f_item(1,5n,Sitem[0],)

f_aty(1,5n)
f_newQ_U(1,5n,SdelChk[0],SnewQ][0],1,0)

f_delChk_U(2,5n,5delChk[0],SnewQ[0],SdelChk[1],SnewQ[1])

f_item(2,5n,Sitem[0],Sitem[1])
f_aty(2,5n)

f_newQ_U(2,5n,SdelChk[0],SnewQ[0],SdelChk[1],SnewQ[1])

NULL

NULL
nonemptyCart
UPDATE

Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
Let’s take a closer look at the shopping cart blocks. This is the request in FD form. It’s in 2 columns to fit on the slide.
There are 18 factors. Their names are listed in red here.
Their values are listed in the 3 blocks, which start with the red lines. Here we see $n can have the values 1, 2 or 3 in all the blocks.
Item values can be itemA, itemB, itemC or NULL.
The f_item function returns the values in all 3 blocks, for $item[0],
$item[1]
and $item[2]. The function appears 9 times in the request.
Shopping cart demo
Let’s see how this works. The CHECK block has 14 functions to order and evaluate. The QTY block also has 14, and the UPDATE block has 12 functions. The test cases are generated from the resulting subblocks. Here is the submitted request with 3 FD blocks. In the first test case, there are 3 different items. The event is to check itemA in position 2 for deletion. The next test case has only 1 item in position 0. Its event is to enter the quantity 1 to replace its current value of 2. 98 test cases were generated.

Evaluation of composite functions

+ FD block CHECK 25 FV blocks + Sitem[1]: NULL + Sitem[2]: NULL Test cases
-l + FD block Qry 100 blOCkS 0o e e oo e e oo 1.
{ + ED block UPDATE 58 blocks b e e 2
i e oy SN 3
S cfy .. $n: 1 . a
T Cf3 + $|tem[2] NULL
+ Sitem[1]:itemB itemC | *Sitem[2]: itemC
+ Sitem[0]: itemA itemB itemC 1 -1 + Sitem[2]: itemB
...... oy o R -
......... Cf3 '—<
Sn:23 K
$n:123 a2
_ . _ + $item[2]: NULL
Evaluation & collection + sitem[1]: itemA itemC I s et feme
cf,: f_item(0,%n,,) | | +Pitem(2):itemA
......... Cf3 L || ees oo sss ses sss ses eee
cf,: f_item(1,5n,Sitem([0],) 4]

W
=}
N
w

in

cf;: f_item(2,5n,Sitem[0],Sitem[1])

Cn. 2
+ Sitem[1]:itemA itemB + Sitem[2]: NULL
1 + Sitem[2]: itemB
1 -1 + Sitem[2]: itemA

wn
=}
N
w

4n

C V.

I n:3
TeStcove r CO m $: Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
Let’s look at how the f_item functions are evaluated. We’ll skip the other functions for simplicity. Here’s the FD block for the CHECK event, with 3 combination functions.
The request is parsed, and 3 instances of the function are found. The first argument is a fixed value indicating the item’s position. cf1 is for item[0], cf2 if for item[1] and cf3 is for item[2]. The functions depend on $n because whenever the position ≥ $n, the item’s value must be NULL. The 3rd and 4th arguments say which values must be skipped, so that the items are not repeated in different positions. Now the evaluation order matters. It must be done in the order of position, because $item[1] depends on $item[0], and $item[2] depends on both $item[0] and $item[1].
So $item[0] is evaluated first.
For all values of $n, the $item[0] factor can take the value itemA, itemB or itemC. These values are collected into 1 block, and the nondeterminant values are inherited.
Next we evaluate $item[1] for all combinations of $n and $item[0]. These combinations are collected into 4 blocks as follows.
If $n is 1, there cannot be an item in position 1, so $item[1] is NULL.
If $n is 2 or 3, there can be an item in position 1, but its value must be different from $item[0]. These combinations are collected into blocks for when item[0] is itemA,
itemB,
and itemC. These 4 blocks contain their respective determinant values for $n and $item[0], and they inherit their nondeterminant values.
Now we evaluate $item[2] in each of these 4 blocks for all combinations of $n, $item[0] and $item[1].
In the first block $n is 1; there cannot be an item in position 2. $item[2] is NULL.
When the second block is evaluated, its values are collected into 3 new blocks. $n can be 2 or 3. When $n is 2, there cannot be an item in position 2, so $item[2] is NULL.
If $n is 3, there can be an item in position 2, but its value must be different from those of $item[0] and $item[1].

The third block gives a similar pattern. In the first subblock $item[2] is NULL.
And $item[2] gets a different value
in the other subblocks.
Evaluation of the fourth block also yields 3 new blocks, as before. One is NULL.
The second block is for itemB,
And the third is for itemA. All of the new blocks contain their respective determinant values, and they inherit their other, nondeterminant values.
The 3 instances of the f_item function yield10 fixed value blocks in this example. But when all 14 functions in the CHECK block are evaluated, 25 fixed value blocks result.
The 3 instances of the f_item function recur, and are processed the same way, in the QTY and UPDATE blocks. The QTY functionally dependent block yields 100 fixed values blocks.
The UPDATE block yields 58 fixed values blocks.
Together the 183 fixed values blocks are used to generate the 98 test cases.

Hybrid functions for variable strength

e Hybrid functions return tuples of their arguments
pair(Sa,Sb) returns (Sa,Sb) triple(Sa,Sb,Sc) returns (Sa,Sb,Sc)
e Hybrid factors force higher strength in pairwise designs
Factors (Sa,Sb) & (Sc,Sd) force strength 4 coverage of factors Sa Sb Sc Sd
e Hybrid factors were defined for variable strengths <6
e Hybrid functions inherit values from their superblocks

So they conform to other test model constraints if present
e Variable strength test cases were generated for the shopping
cart example, e.g. 2 triple factors were used for strength 6:
(SdelChk[0],5SnewQ]0],SdelChk][1]) (SnewQ]1],SdelChk[2],SnewQ]2])

- TeStcove r CO m Copyright © 2016 Testcover.com, LLC. All rights reserve

Presenter
Presentation Notes
Embedded hybrid functions were used to generate test cases with variable strength. Hybrid functions return tuples of their arguments. For example, pair($a,$b) returns ($a,$b), and triple($a,$b,$c) returns ($a,$b,$c). As factors they associate 2 or more other factors with each other.
A hybrid factor is a factor appearing in all blocks with values given by a hybrid function. Hybrid factors can force higher strength in pairwise designs. For example, given 4 factors $a $b $c $d, 2 pairing factors ($a,$b) & ($c,$d) force all ($a,$b) pairs to be paired with all ($c,$d) pairs. That’s strength 4 coverage.
Hybrid factors were defined for several different schemes with strengths up to 6.
Like all other embedded combination functions, hybrid functions inherit values from their superblocks. So they conform to other test model constraints, if any are present.
Variable strength test cases were generated for the shopping cart example for 6 factors, with strengths from 3 to 6. The strength 6 example used 2 triple factors as shown.

)
\J

Conclusions

e Test designs can conform to constraints described by simple
functions in a familiar language

e Embedded functions results are equivalent to using fixed values

e Equivalence class functions can eliminate the need for higher
strength generation to reach classes of expected results

e Embedded functions can simplify testing complex systems
through encapsulation and composite relations

e Hybrid functions can increase strength among selected test
factors while conforming to system constraints

%al Testcover.com

Copyright © 2016 Testcover.com, LLC. All rights reserved.

Presenter
Presentation Notes
Several examples in the paper have shown that test designs can conform to constraints described by simple functions in a familiar language. This simplification may enhance the usability of combinatorial testing and increase its adoption among practicing software engineers.
Embedded functions results are equivalent to using fixed values. Direct comparisons show they can cover the same combinations and generate the same test cases.
Equivalence class functions can eliminate the need for higher strength generation to reach classes of expected results. This technique can lead to cost savings for systems whose expected results are well defined.
Embedded functions can simplify testing complex systems. When the same bit of logic occurs 9 times in the same model, encapsulating it in a function simplifies the model.
Finally embedded functions can be used for variable strength. Hybrid functions can increase strength among selected test factors while conforming to system constraints.

Next steps

e Substitution function implementation

* Interface to include and manage functions
e Additional resource management

e Security considerations

* More testing

%al Testcover.com

Copyright © 2016 Testcover.com, LLC. All rights reserved.

	Slide Number 1
	Project objectives and this talk
	Test model terms
	Functionally dependent test factor values
	Direct Product Block (DPB) notation
	Direct Product Block (DPB) notation
	Evaluation of calendar last_day function
	Equivalence class functions
	Equivalence class factors
	Evaluation of equivalence class functions
	Constraint simplification
	Shopping cart state diagram
	Shopping cart
test factors
	Shopping cart blocks
	Evaluation of composite functions
	Hybrid functions for variable strength
	Conclusions
	Next steps

